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Pulse coupled oscillators �PCOs� represent an ubiquitous model for a number of physical and biological
systems. Phase response curves �PRCs� provide a general mathematical framework to analyze patterns of
synchrony generated within these models. A general theoretical approach to account for the nonlinear contri-
butions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here,
by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a
general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC cor-
rections in the derivation of an approximate discrete map, the stable fixed point of which can predict the
domain of 1:1 phase locked synchronous states generated by the PCO network.
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Networks of pulse coupled oscillators �PCOs� are used in
the study of a wide range of physical and biological systems
such as the plate tectonics in earthquakes, pacemaker cells in
the heart, flashing flies, and the neurons in the brain �1–3�.
These systems interact by transmitting and receiving discrete
time pulses that interfere the otherwise smooth time evolu-
tion of the oscillator �4�. The emergence of synchrony is a
ubiquitous collective dynamical feature observed in these
networks �5–7�. The mathematical technique of phase reduc-
tion is commonly employed in the study of the patterns of
synchrony generated by these networks �8�. The technique
involves determining the phase response curve �PRC� for an
oscillator that quantifies how the oscillator shifts in phase in
response to a perturbation through a pulsatile input. Given
the PRC, one can construct a discrete map that can be used to
predict the entrainment of an oscillator to a periodic stimulus
and phase locking in a network of PCOs �9�. In most physi-
cal systems modeled as PCO networks, the infinitesimal
phase response curve �iPRC�, which represents the oscilla-
tors response to a weak perturbation, suffices to understand
the collective dynamical properties such as synchrony, wave
propagation, and pattern generation in these oscillator net-
works �10,11�. However when the oscillators are interacting
through a strong coupling, the weak coupling limit may give
wrong results �12,13�. This is because the large deviations
from the limit cycle caused by strong coupling may persist
into at least one cycle beyond the cycle containing the per-
turbation �14,15�. In these cases, higher-order PRC terms are
nonzero and play a significant role in determining the stabil-
ity of synchrony generated by the PCO network.

To our knowledge, a general theoretical approach to ac-
count for the nonlinear effects of higher-order PRC terms in
the synchrony of a PCO network is still lacking. Here we
present a general mathematical framework that allows us to
incorporate the nonlinear contributions from higher-order
PRC terms in the approximation of a discrete map that is
used to predict the stability of 1:1 synchrony in a PCO net-
work. We consider a prototypical example of a PCO net-
work, i.e., two synaptically coupled interneurons, to develop

our theory. The choice of the synaptically coupled interneu-
rons in this study is motivated by the importance of inhibi-
tory neuronal networks in the generation of synchronous
brain rhythms, which are known to constitute a fundamental
mechanism for information processing in the brain �16,17�.

Each oscillator in the PCO network considered here is
represented by a single compartment conductance based fast
spiking interneuron model �18�. The dynamical equation for
the model neuron is given by

C
dV�t�

dt
= IDC + IS�t� + gNam�

3 h�t��ENa − V�t��

+ gKn4�t��EK − V�t�� + gL�EL − V�t�� �1�

where V�t� is the membrane potential, IDC is the constant
input dc current that determines the intrinsic spiking period
T0, Er and gr represent the reversal potential and conductance
of ion channels with parameters obtained from �18�. The gate
variables m�, h�t�, and n�t� satisfy first-order kinetic equa-
tions described in �18�. The resting potential of neuron is
Vrest=−65 mV �IDC=0� and the threshold for the generation
of an action potential is VT�−55 mV. IS�t�=gsS�t��ER
−V�t�� is the synaptic current �ER is the reversal potential in
mV; gs is the synaptic conductance in mS /cm2�. S�t� satisfies
a first-order kinetic equation as described in �19–21�.

The PRC for a neuron receiving perturbation through a
synapse is in general a function of the synaptic parameters
and depending on the strength of synaptic input, the pertur-
bations can have strong effect on the period of neuronal spik-
ing. As a result in this case the PRC is measured in terms of
time rather than phase of perturbing input and is referred to
as the spike time response curve �STRC� �22�. STRCs pro-
vide a natural experimental framework to study the perturba-
tion effects of synapses on the firing times of a neuron with-
out the requirement of a model to mimic neuronal dynamics.
Following Acker et al. �22�, we define the STRCs for a neu-
ron oscillator as � j��t ,�R ,�D ,gs ,ER ,T0�=

Tj−T0

T0
where T0 is

the intrinsic period of spiking, Tj represents the length of the
jth spiking cycle from the cycle j=1 in which the neuron
receives synaptic stimuli at time 0��t�T0. The synaptic
parameters are �R, the synapse rise time, �D, the synaptic
decay time, gs, the synaptic strength and ER, the reversal*sachin.talathi@bme.ufl.edu
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potential of the synapse. In general the synaptic input need
not be weak �23,24�. We have assumed that the intrinsic
period of spiking for the neuron T0, is constant in our defi-
nition of STRC above. We therefore exclude the important
case of a neuron exhibiting spike frequency adaptation �25�.
Recent work by �26� addresses the issue of spike frequency
adaptation using functional phase response curves which are
generated using a train of pulses applied at a fixed delay after
each spike, with the PRC measured when the phasic relation-
ship between the stimulus and the subsequent spike in the
neuron has converged. The STRCs are obtained numerically
�22� as explained through Fig. 1�a�. The neuron firing regu-
larly with period T0, is perturbed through an inhibitory syn-
apse at time �t after the neuron has fired a spike at reference
time zero. The spiking time for neuron is considered to be
the time when the membrane voltage V, crosses a threshold
�set to 0 mV in all the calculations presented here�. As a
result of this perturbation, the neuron fires the next spike at
time t1, representing the first cycle after perturbation of
length T1�T0. Depending on the properties of the synapse,
i.e., gs, �R, �D, and ER; the length of subsequent cycles might
change. In Figs. 1�b� and 1�c�, we show STRCs calculated
for a neuron receiving synaptic input from a hyperpolarizing
�ER�Vrest� and a shunting �Vrest�ER�VT� synapse, respec-
tively. For hyperpolarizing inhibition the first-order STRC is
nonzero for all perturbation times 0��t�T0; the second-
order STRC is nonzero for �t→T0 and all higher-order
STRC terms are zero. However for shunting inhibition the
effect of perturbation lasts for the first three cycles including
the perturbing cycle, i.e., both the first-order and second-
order STRCs are nonzero for 0��t�T0 and the third-order
STRC is nonzero for �t→T0. Higher-order STRC terms for
shunting synapse are present because, strong shunting input

tends to depolarize the neuron toward the threshold for spik-
ing thereby reducing the effective time for the occurrence of
the next spike. For all further calculations, unless otherwise
mentioned, we will suppress the dependence of STRC on
synaptic parameter’s and the intrinsic period of the neuron
T0. We further define the following two functions derived
from STRCs: the recovery time following a single synaptic
perturbation R��t�=T0�1+�1��t��−�t and the period of the
jth firing cycle, Ej��t�=T0�1+� j��t�� �j=1 corresponds to
the firing cycle in which the neuron receives its synaptic
perturbation�.

We will now use STRCs to present a general theoretical
approach to determine an approximate discrete map for 1:1
synchrony between two synaptically coupled interneurons.
We will consider the specific example of shunting inhibition
to formulate our theory because of the significant nonzero
contributions from the higher-order PRC terms. Shunting in-
hibition in networks of interneurons have also recently been
demonstrated to play an important role in the generation of
synchronous gamma rhythms in the brain �24�. We begin by
considering the simple case of a periodically firing neuron
that receives synaptic stimuli through a shunting synapse in
each of its two successive firing cycles at times �t1 and �t2 as
shown in Fig. 2. Our goal is to determine the length of the
second cycle T2.

In the presence of a single perturbation at �t1 in the cycle
1, following from the definition of STRCs we have T2
=E2��t1�=T0�1+�2��t1��. Similarly in the presence of a
single perturbation in cycle 2 at time �t2, again following
from the definition of STRCs we have T2=�t2+R��t2�
=T0�1+�1��t2��. In writing this equation we made an im-
plicit assumption that the default period of second cycle in
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FIG. 1. �Color online� �a� Schematic diagram demonstrating the
effect of perturbation received by a spiking neuron at time �t. The
cycle containing the perturbation defines the first order STRC and
the subsequent cycles define the higher order STRC terms. �b� The
STRCs �1 �black line�, �2 �red �gray� dash-dot line�, �3 �green
�light gray� dashed line�, �4 �blue �dark gray� dotted line�, for hy-
perpolarizing synaptic input with ER=−75 mV. �c� The STRCs for
shunting synaptic input with ER=−55 mV. The synaptic parameters
are �R=0.1 ms, �D=8 ms, gs=0.15 mS /cm2. The intrinsic period
of firing for the neuron is T0=31 ms and Vrest=−65 mV.
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FIG. 2. �Color online� Schematic diagram to demonstrate the
renormalization and rescaling procedure to determine the length of
second cycle T2. Red dashed �dark gray� lines represent the effec-
tive spike times after the neuron receives two consecutive synaptic
perturbations. Black dotted lines represent the change in the firing
cycle caused by synaptic input in the first firing cycle. Shown in
black dashed line is the unperturbed firing cycle for the neuron. We
assume that the drift away from the limit cycle caused by the syn-
aptic perturbations �at times �t1 and �t2� can be represented through
the change in the phase velocity of the trajectory. This assumption
allows us to use similarity of triangle properties to determine the
renormalized stimulus time �te and the rescaled phase of the trajec-
tory at the instance of second synaptic perturbation given by �e.
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the absence of the single perturbation at time �t2 is T0. How-
ever if the synaptic input at �t2 is preceded by a synaptic
perturbation in the previous cycle at �t1, the default length of
the second cycle is no longer T0. Therefore, in order to cor-
rectly determine the length of second cycle in this case, we
have to compensate for the change in the default length of
second cycle caused by synaptic input at time �t1. This com-
pensation is done by renormalizing the synaptic perturbation
time in the second cycle to �t2

e =�t2
T0

E2��t1� and rescaling the
phase of the trajectory at the time of second perturbation by
�2

e =
�t2

E2��t1� −
�t2

T0
as explained through schematic diagram in

Fig. 2.
In Fig. 2 we provide a detailed schematic of various

changes in spike times resulting from two consecutive syn-
aptic perturbations to provide an intuitive idea behind our
proposed renormalization and rescaling procedure. We as-
sume that the drift away from the limit cycle resulting from
synaptic perturbations at times �t1 and �t2 can be represented
by a change in the phase velocity of the resulting trajectory
rather than the perturbation of the trajectory away from the
limit cycle. Our assumption as stated about implies that the
firing frequency of the resulting trajectory is modified such
that the new intrinsic period of firing of the oscillator is
E2��t1�. Since the open loop STRC defined above is depen-
dent on the intrinsic period of the oscillator, the change in the
firing period of the oscillator from T0 to E2��t1�, will change
the shape of the open loop STRC function. We assume that
this change is linear in that �a� the STRC will either stretch
�E2��t1��T0� or shrink �E2��t1��T0� along the perturbation
time axis. The application of the similarity triangles property
to the phase plot described in Fig. 2 allows us to compensate
for change in the shape of STRC by renormalizing the effec-
tive time of synaptic perturbation to �te

2. The change in phase
velocity of the trajectory also means that the neuron now
receives different amount of net current for a given magni-
tude of synaptic perturbation. In order to account for the true
effect of synaptic perturbation on the original trajectory, we
also have to rescale the effective phase of the synaptic per-
turbation. Again going back to schematic diagram in Fig. 2,
this compensation is done by modifying the effective phase
of synaptic perturbation to �2

e. In order to determine how the
effective phase modifies the effective recovery time of the
trajectory, we empirically fit the modified recovery period to
the rescaled phase of the synaptic perturbation. The best fit in
the least-squares sense is obtained by rescaling the effective
recovery period to R��t2

e��1−�2
e�.

The length of cycle 2 can now be written as T2=�t2
+R��t2

e��1−�2
e�. In terms of STRCs we have

T2 = �t2 + �T0�1 + �1� �t2

1 + �2��t1�	
 −
�t2

1 + �2��t1��
	�1 −

�t2

T0�1 + �2��t1��
+

�t2

T0

 �2�

When �2�x��0 �see Fig. 1�b�� Eq. �1� reduces to

T2 � T0�1 + �1��t2� + �2��t1�� . �3�

The approximation in the form of Eq. �3� has been de-
rived earlier by �12,13,27� to analyze the effect of periodic
perturbation on a periodically firing neuron under the as-
sumption that the second-order resetting is complete and the
trajectory returns to its limit cycle before the arrival of sub-
sequent perturbation. In other words the resetting by the syn-
aptic perturbation was assumed to be instantaneous. This is
most likely the situation for hyperpolarizing synaptic input
for which �2��t��0 unless �t→T0. The authors have suc-
cessfully used this approximation to demonstrate effect of
second order STRC component on stability of 1:1 synchro-
nous state in a ring of pulse coupled oscillators �12�; to de-
termine phase resetting and phase locking in a hybrid circuit
of one model neuron and one biological neuron �13�; and
more recently to predict 1:1 and 2:2 synchrony in mutually
coupled network of interneurons with synapse that is hyper-
polarizing �27�. As stated above, we do not assume instanta-
neous resetting and we do not consider the situation when
the neuron receives periodic perturbation. Instead, the effect
of synaptic perturbation is considered to change the phase
velocity of the trajectory on the limit cycle and we determine
the effective length of second firing cycle in the presence of
two consecutive synaptic perturbations.

The ability for Eqs. �2� and �3� to successfully predict the
length of second cycle is quantified by determining the per-

cent error �E2��t1 ,�t2�=100�
T2

N−T2
P

T2
N � between the predicted

value for the length of second cycle: T2
P and the actual value:

T2
N, determined by numerically solving the ordinary differen-

tial equation �ODE� in Eq. �1�. In Fig. 3, we plot the color
coded percent error �E2��t1 ,�t2� for a neuron receiving
stimuli through a shunting synapse with the following pa-
rameters: gs=0.15 mS /cm2, �R=0.1 ms, �D=8 ms, and ER
=−55 mV. The inset shows the plot of T2

N and T2
P for the

specific case of �t1=15 ms. We see that while Eq. �2� is
correctly able to predict the length of second cycle �Fig.
3�a��, Eq. �3� fails to capture the effect of second-order
STRC contribution in determining T2 �Fig. 3�b��. We would
like to emphasize that the expression for the predicted value
of T2 through Eq. �2� is only dependent on STRCs estimated
for a given synapse type without any explicit assumption on
the strength of synaptic input to the neuron and is valid both
in the regime of weak and strong coupling and for slow and
fast synaptic dynamics.

(ms) (ms)

(m
s)

a b

FIG. 3. �Color online� �a� Maximum error between the predicted
value T2

P determined from Eq. �2� �red, “light gray”� and Eq. �3�
�black�, respectively, and the numerically estimated value T2

N. �b� T2

as function of �t2 determined using Eq. �2� �red, “light gray”�, Eq.
�3� �black� and through numerical simulations �open black circles�
for �t1=15 ms.
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We now generalize our approach of renormalization and
rescaling to consider the situation when the neuron receives
three synaptic stimuli in three consecutive firing cycles at
time �t1 in cycle 1, at time �t2 in cycle 2, and at time �t3 in
cycle 3. This is an important case to consider since we know
from Fig. 1�c� that the effect of a perturbation through a
shunting synapse last for three consecutive firing cycles of
the neuron. We first determine the length of third cycle

Ẽ3��t1 ,�t2�, when the neuron receives two synaptic stimuli at
times �t1 and �t2. Since �3��t��0 �see Fig. 1�c��, following

Eq. �3� we can approximate Ẽ3�T0�1+�2��t2
e�+�3��t1��.

Now, following from Eq. �2�, the length of third cycle in
the presence of three consecutive synaptic stimuli can be
written as T3��t3+R��t3

e��1−�3
e�+T0�3��t1�; where �t3

e

=�t3
T0

Ẽ3��t1,�t2�
and �3

e =
�t3

Ẽ3��t1,�t2�
−

�t3

T0
. Note the addition of the

term T0�3��t1�, which determines the contribution of the
first spike to the third cycle.

We can now derive the approximate discrete map for 1:1
synchrony between neurons A and B firing with intrinsic pe-
riod T0

A�T0
B and coupled through a shunting synapse �see

Fig. 4�a��. The heterogeneity in the intrinsic firing rates of
the two coupled neurons is quantified through H=100��IDC

B

− IDC
A � / IDC

A �, where IDC
A and IDC

B are constant dc currents driv-
ing neurons A and B. From Fig. 4�a�, when the two neurons
are locked in stable 1:1 synchrony we have for neuron A,

tn+1
A � tn

A+�n+R��n
T0

A

Ẽ3��n−2,�n−1�
���1−�3

e�+T0
A�3��n−2��, where

tn
X is the time of nth spike for neuron X= 
A ,B� and �n=�tn

B

−�tn
A. Since neuron B, does not receive any external pertur-

bation, we have for neuron B, tn+1
B = tn

B+T0
B. The discrete map

for the evolution of �n can then be obtained as

�n+1 � T0
B − R��n

T0
A

Ẽ3��n−2,�n−1�
��1 − �3

e� − T0
A�3��n−2� .

�4�

The steady state solution to above equation can be obtained
by solving for the fixed point �� defined by �n+1=�n=�n−1
=�n−2=��. We then obtain F����=T0

B, where F���� is given
by

F���� � �� + T0
A�3���� + R� ��T0

A

Ẽ3���,���
�

	�1 −
��

Ẽ3���,���
+

��

T0
A� . �5�

In the limit of �2�0 and �3=0, F�����T0
A�1+�1����

+�2����� corresponding to the well-known equation for the
solution to the fixed point of discrete map for synchrony
between coupled oscillators with any type of pulsatile cou-
pling with no higher-order PRC contributions �20�. Stability
of the fixed point �� representing the solution to Eq. �5�
requires 0� �

�F��n,�n−1,�n−2�
���n,�n−1,�n−2� ��n=�n−1=�n−2=�� �2. This stable fixed

point represents the 1:1 phase locked state for the two
coupled interneurons.

In order to determine whether Eq. �4� can predict 1:1
phase locked states for the two pulse coupled neurons con-

sidered above, we apply the discrete map to the specific case
of neurons A and B coupled through a shunting synapse with
parameters: ER=−55 mV, �R=0.1 ms, and �D=8 ms. Neu-
ron A receives fixed dc current IDC

A , such that it is firing with
intrinsic period of T0

A=31 ms. We solve Eq. �5�, for different
values of H, thereby modulating T0

B, to determine the set of
values for gs, which will result in stable fixed point solution
for Eq. �5�. The solution is obtained by estimating STRCs for
each value of gs and then determining whether there is a
fixed point solution to Eq. �5�. In Fig. 4�c�, we present the
results of this calculation. For a given value of H, the curve
in black gives the lower and upper bounds on the strength of
coupling for shunting synapse gs, for which a unique stable
solution to Eq. �5� exists. For example with H=50, the range
of values for gs for which a unique stable solution exists for
Eq. �5� is 0.09�gs�0.21. This region of 1:1 synchronous
locking is analogous to the classic Arnold tongue �20,28�,
obtained for synchrony between two coupled nonlinear os-
cillators. In Fig. 4�b�, the general feature of the Arnold
tongue is represented as the region bounded by two black
curves obtained through STRC by solving for fixed point of
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FIG. 4. �Color online� �a� Schematic diagram representing spike
timing for neurons A and B when they are phase locked in 1:1
synchrony. �b� We show domain of 1:1 synchrony estimated
through STRCs from the discrete map in Eq. �5� �shown in black�
and those obtained through numerical simulations of the network
�shown in blue, “dark gray”� for two unidirectionally coupled inter-
neurons coupled with shunting synapse with parameters �R

=0.1 ms, ER=−55 mV and �D=8 ms. The pair of gS-H values for
which we solve the discrete map in Eq. �4� to determine the stable
fixed point for 1:1 synchrony is shown in red filled circles within
the Arnolds tongue. �c� The domain of 1:1 synchrony estimated
through the discrete map from Eqs. �6� and �7� �shown in black� and
those obtained through numerically simulations for mutually
coupled interneurons as shown in the inset with synaptic parameters
�R=0.1 ms, ER=−60 mV and �D=2 ms. The pair of gS-H values
for which we solve the discrete map in Eqs. �6� and �7� to determine
the stable fixed point for 1:1 synchrony is shown in red filled circles
within the Arnolds tongue.
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Eq. �5�. In Fig. 4�b�, shown in blue �dark gray� is a similar
bound on the range of heterogeneity leading to synchronous
oscillations between the two coupled neurons, obtained by
numerically solving Eq. �1� for the evolution of the dynamics
of the two synaptically coupled neurons. This curve is ob-
tained by fixing the firing period of neuron A, T0

A and varying
the firing period of neuron B, by changing IDC

B and determin-

ing the strength of synaptic coupling gs that results in
T0

B

�TA�
�1. As can be seen from Fig. 4�b�, the results match to those
obtained through STRC calculations for fixed point of Eq.
�5�.

Similar analysis can be performed to derive an approxi-
mate discrete map for 1:1 synchrony between neurons A and
B when they are mutually coupled to each other as shown in
Fig. 4�c� �inset�. The discrete map for the evolution of �n in
this case is given as

�n+1 � RB��n�
T0

B

Ẽ3
B��n−2� ,�n−1� �

��1 − �3
eB� + T0

B�3
B��n−2� � �6�

where �n�= tn+1
A − tn

B �see Fig. 4�a�� and is given as

�n� � RA��n

T0
A

Ẽ3
A��n−2,�n−1�

��1 − �3
eA� + T0

A�3
A��n−2� �7�

The functions RX and �3
eX, X= 
A ,B� are given through STRC

estimates obtained for neuron’s A and B which are dependent

on their intrinsic firing rates T0
A and T0

B, respectively. Numeri-
cally estimated Arnold Tongue and the analytically estimated
Arnold tongue for the case of ER=−60 mV, �D=2 ms, is
shown in Fig. 4�c�.

In conclusion, by considering the specific example of a
PCO network, i.e., synaptically coupled neurons, we have
provided a general theoretical approach of rescaling and
renormalization to account for the nonlinear contributions
from the higher order PRCs in the approximation of a dis-
crete map that can be used to predict the stability of 1:1
synchronous state in heterogeneous pulse coupled oscillators.
The methodology presented here provides a general �beyond
the limit of weak coupling� model independent framework to
predict the emergence of synchrony within a heteroge-
neously coupled PCO network. We conclude by noting that
the methodology presented here cannot be directly applied to
predict patterns of synchrony in a larger network of PCOs,
however the ability to predict local synchrony between pairs
of heterogeneously coupled PCOs may provide clues for ob-
serving synchrony in a large network of PCOs.

We are indebted to H. D. I. Abarbanel and P. Khargonekar
for very fruitful discussions. This work has been supported in
part through a grant from the Office of Naval Research
�N00014-02-1-1019�. S.S.T. was partially funded from the
Epilepsy Foundation of America.
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